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Physical and Geometrical Aspects of Neutron Stars 
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Abstract 

The fundamental notions of neutron stars have been studied. Based on concepts and principles of 

astrophysics and cosmology, some physical and geometrical parameters have been calculated. 

Visualization of some results are done with Mathematica Software. 
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Introduction 

A neutron star, a very small and dense object which has a total mass of between 10 and 

29 solar masses. Most of neutron stars are made up almost of entirely neutrons and a mass of 1.4 

to 2.16 solar masses and the radius of these are typically 10 kilometers (km). The neutron stars 

are formed between the great explosion of some massive stars and the gravitational forces of 

other particles. 

In the formation of them, these normally contain equal numbers of electrons and protons 

to be able to produce neutrons. To be a more massive neutron star, the collapse of neutron 

degeneracy pressure is mainly a part of it according to Pauli exclusion  principle. If the needs 

are not fully provided, it becomes to form a black hole. 

Regarding the neutron stars’ temperature and pressure, they are incredibly hot and dense. 

Because of the great density, the star’s weight is closely 3 billion tonnes. An ordinary neutron 

star’s gravitational pull is examined as nearly 200 billion times stronger than earth’s gravity. So, 

it can be said that to form a full neutron star, high temperature, density and pressure are needed 

[Potekhin A .Y,  2010].  

Although some isolated neutron stars are not able to produce enough x- rays but others 

can do it with the help of having gravitational potential energy from the companion star that has 

enormously emitted electromagnetic radiation. 

 

 

Figure 1 The picture of a neutron star – the star’s tiny size and extreme density give it  

     incredibly powerful gravity as its surface 

 

 

 
1 Professor, Department of Physics, University of Yangon 
2 Lecturer, Department of Physics, University of Yangon 
3 Lecturer, Department of Physics, University of Sagaing’   



316      University of Yangon Research Journal 2022, Vol. 11, No.2 

 

History of Discoveries 

Sir James Chadwick, the first discoverer and the noble prize winner, found out the 

elementary particles called the neutrons in 1932. One year later, Walter Baade and Fritz Zwicky 

introduced the existence of neutron stars and particularly pointed out the powers of these stars. 

In 1967, Franco Pacini also revealed how these stars’ electromagnetic waves were emitted and 

flowed inside their bodies. Then, Jocelyn Bell and Antony Hewish noticed the significant energy 

sources of the neutron stars which were also sending out regular radio pulses[Yakovlev D.G et 

al, 2004]. 

Formation of Neutron Stars 

Before changing into a very energetic neutron star; firstly, the stars have run out of 

nuclear fuel in the core and it later must be provided by degeneracy pressure alone. Then, when 

these pressure were blown away, the core collapsed further and sent the combination of high 

temperature, density, electrons and protons as a supernova process. These processes are 

completely needed to form a fully neutron star[Gusakov M.E et al, 2004]. 

One more special point of a neutron star is having a strong, intense gravitational pull and 

magnetic fields which are much stronger than the earth’s. Under these stars’ influence of 

extraordinary gravity, most of the objects’ elements are consumed. 

Neutron Degeneracy 

It is believed that Neutron degeneracy, as well as electron degeneracy, is greatly needed 

in the process of neutron stars. For weak points, any massive stars which have fewer masses 

can’t be neutron stars as they have insufficient gravitational collapse[Yakovlev D.G et al, 2001]. 

 On the contrary, the stars having enough masses can be neutron stars for having 

sufficient masses, pressure and gravitational collapse.  

 Gravitational Binding Energy for Uniform Sphere 

Gravitational binding energy of a sphere with radius R is found by assuming a constant 

density ρ, the masses of a shell and the sphere inside it are:  
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Since ρ is simply equal to the mass of the whole divided by its volume for objects with uniform 

density, therefore
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Then the variation of gravitational potential of neutron star is shown in Figure 1 and 2. 

These figures show that gravitational potential is gradually stable after passing the point of 

singularity. 

 

Figure 2 3D variation of gravitational potential with mass and radius of neutron star 

 

Figure 3  3D variation of gravitational potential with mass and radius of neutron star avoid 

singularity point 
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Calculation of Degeneracy Pressure and Mass-Radius Relation 

(i) Fermi Energy 

Starting by calculating the quantum number magnitude nF = 
222
znynxn ++ of the neutron 

at the very topmost fufilled energy level. This assumes zero temperature of the neutrons, which 

is not entirely accurate, but is a reasonable approximation. The formula relating the total number 

of neutrons N to nF is:                                     N = 

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The factor of 2 represents the fact that both spin up and spin down are available in each 

quantum state.                                               N  = 3
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At a given energy level, a neutron has a momentum  p  = 
3

1
2V

hn
corresponding to the nth wave 

solution in quantum mechanics. It can use to compute the Fermi Energy:
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The symbol m denotes the neutron mass, not the electron mass. Then the variation of Fermi 

Energy with volume and total number of neutrons are demonstrated in Figure 4. This figure 

shows that the Fermi Energy is decreased due to the increasing of volume of neutron star. 

 

Figure 4 Demonstration of Fermi energy with volume of neutron star and total number 

of neutrons 
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(ii) The internal Energy of the Core 

Now computing the internal energy of the core, excluding gravitational energy. This is 

done by integrating the energies of all of the fulfilled energy levels. Since the core is degenerate, 

these levels begin at the ground state and are continuously fulfilled up to nF .  
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(iii)  Degeneracy Pressure                                    

From the above expression for the internal energy, it can compute the degeneracy 

pressure in the usual thermodynamic way:  Pd  = 
V
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Next turning to the gravitational pull of the star upon itself, as derived in the equation 

(3), its gravitational self-energy is given, in the Newtonian Theory, by: 
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(iv) The Gravitational Pressure    

 The gravitational pressure is calculated as before:  
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 Figure 5    Gravitational pressure with mass and volume 

The negative value indicates that the pressure is attempting to compress the star instead 

of to expand it. The pressures are balanced in the case of neutron star:  

                                                 Pd  +  Pg  =  0      (12) 

By making the substitution of the values of Pd and Pg from the equation (9) and the 

equation (11),  
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where m is the mass of a neutron and the neutron star’s total mass is simply the multiple of m 

and the total number of neutrons, N present in the neutron star, M = mN,  
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(v) Theoretical value for the core’s radius 

To derive a theoretical value for the core’s radius at equilibrium: 
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where R  =  radius of the neutron star ,  M  =  mass of the neutron star 

       Pd  = degeneracy pressure of the neutron star,  m = mass of a neutron (1.6749 ×10-27  kg) 

       G   =  gravitational constant (6.674 × 10-11  m3kg-1s-2)                  

 h = Planck’s constant (6.62607015 × 10-34  Js) Pg = gravitational pressure of the neutron star 

 

 

Figure 6  Graph of the radius R with mass M of the neutron star 

2 4 6 8
M Msun

0.6

0.8

1.0

1.2

R km



322      University of Yangon Research Journal 2022, Vol. 11, No.2 

 

Assuming that the core has a mass of M = 1.5, MSun = 3 × 1030 kg, it arrives at an estimate 

of a neutron star’s radius and degeneracy pressure. From equation (15) and equation (9),                  

R  =  10.755 km   and    Pd  =  2.16 × 1033 Pa. Then, the relation between the radius and mass are 

shown in Figure 6. From this, one can conclude that the larger the mass the smaller the radius. 

Conclusion 

It is concluded that a giant star of total mass between 10 and 29 solar masses has the 

potential to become a neutron star. A typical neutron star has a radius in the order of 10 

kilometers and mass between 1.4 and 2.16 solar masses. As a basic model of the neutron star, it 

can assume that neutron star is composed mostly out of neutrons; the electrons and protons 

present in normal matter combine to produce neutrons at the conditions in a neutron star. Neutron 

stars that can be observed are very hot and have a surface temperature of around 600000 K. A 

neutron star of a normal-sized can weigh of approximately 3 billion tonnes. The gravitational 

field at the neutron star’s surface is about 21011 (200 billion) times that of the Earth. The neutron 

stars have an escape velocity ranging from 100,000 km/s to 150,000 km/s, that is, from a third 

to half the speed of light. When a massive star is compressed during a supernova, and collapse 

into a neutron star, it retains most of its angular momentum. But, it has only a tiny fraction of its 

parents radius and therefore a neutron star is formed with very high rotation speed due to the 

conservation of angular momentum; in analogy to spinning ice skaters pulling in their arms. 

Neutron stars are known that can have rotation periods from about 1.4 ms to 30 ms. Then, it is 

calculated various properties of neutron stars. After that it is derived the gravitational binding 

energy. Finally, it is shown the degeneracy pressure and mass-radius relation of the neutron star. 

As the radius of the neutron star gets smaller, the compactness parameter and the density get 

bigger.  

Acknowledgement 

 The authors would like to express our sincere thanks to Professor Dr Yin Maung Maung, Head of 

Department of Physics, University of Yangon for his permission and encouragement to carry out this research work. 

References 

Potekhin  A.Y, “The physics of neutron stars,” Physics-Uspekhi, vol. 53, no. 12, pp. 1235–1256, 2010, doi: 

10.3367/ufne.0180.201012c.1279. 

Yakovlev D.G, Gnedin O.Y, Kaminker A.D, Levenfish K.P, and Potekhin A.Y, “Neutron star cooling: Theoretical 

aspects and observational constraints,” Adv. Sp. Res., vol. 33, no. 4, pp. 523–530, 2004, doi: 

10.1016/j.asr.2003.07.020. 

Gusakov M.E, Kaminker A.D, Yakovlev D.G, and Gnedin O.Y, “Enhanced cooling of neutron stars via Cooper-

pairing neutrino emission,” Astron. Astrophys., vol. 423, no. 3, pp. 1063–1071, 2004, doi: 

10.1051/0004-6361:20041006. 

Yakovlev D.G, Kaminker A.D, Gnedin O.Y, and Haensel P, “Neutrino emission from neutron stars,” Phys. Rep., 

vol. 354, no. 1–2, p. 1, 2001, doi: 10.1016/s0370-1573(00)00131-9. 

 

 

 

 

 

 

 

 


